
Project Title:
ATCE (Automated Transfer Credit Evaluation)

Team Members:
Tyler Dionne (tdionne2021@my.fit.edu), Kendall Kelly (kelly2021@my.fit.edu)

Project Advisor:
Sneha Sudhakaran, ssudhakaran@fit.edu

Client:
Sneha Sudhakaran, ssudhakaran@fit.edu

Dates of Meetings with the Client for Developing this Plan:
Once a week every other week

Goal and Motivation:

● The overall goal is to create a streamlined and user-friendly tool to help university
students determine whether the credits they earned at a previous institution will
be accepted at the Florida Institute of Technology. This tool will simplify the
transfer credit evaluation process and allow students to obtain accurate transfer
credit evaluation reports in a timely manner which will overall result in a
smoother, efficient transfer between institutions.

● University students often face significant pain and challenges when transferring
between institutions because of the lack of clarity and transparency when it
comes to which credits will be accepted. The current systems in place are
inefficient and force students to wait for manual evaluations. This tool will
address the pain faced by these students by allowing students to upload their
transcript and receive a report right away, eliminating the uncertainty and easing
the decision making process when moving from one institution to another.

Approach (key features of the system):

● Two Tier User System: In our web-application there exists two user types; user
and admin. The user can access the ATCE (Automated Transfer Credit
Evaluator) tool where they can upload their transcript and select a catalog to
receive a detailed report on the transfer credit evaluation. The user shall also be
able to create a user-level account on our platform. The admin shall be able to
access the source of the website, site traffic information and backend processing
information. The key focus will be to ensure the user-level user may not access
any restricted resources on our server along with any information that may allow
for privilege escalation. The admin-level user will act as an example of an
account with escalated privileges. This will involve enforcing IAM (identity and
access management) best practices to ensure that the user and the admin
remain separate with access to different resources.

● Two User Inputs: There exists two user inputs to our software. The first user input
is a file containing the student's transcript. The ATCE tool currently has support
for both .txt and .pdf files in a particular format. The transcript file shall contain
information regarding courses taken previously, the credit amount for each
course and in the future shall contain a brief course description. The second user
input will be a selection from a dropdown menu of Florida Institute of Technology
catalogs stored inside of our web application. This will allow the students to
choose which degree program/catalog should be analyzed with respect to their
transcript and provide a detailed report of which transfer credits will be accepted
within the selected catalog.

● Detailed Evaluation Results: There shall be one output from our tool which will
display a detailed analysis of which credits will be accepted. This is currently
done via a table displayed underneath the analyze button on the ATCE page of
our web application. In the future this table shall display additional information
about which credits will be accepted, the course number, the number of credits
accepted along with the equivalent course at the Florida Institute of Technology.
This information shall be sufficient enough to communicate the results of the
transfer credit evaluation to the user and clearly state which credits will be
accepted.

● Full Stack Web Application: Using the Flask python framework such as Flask this

web application shall have a full implementation of front-end and back-end
functionality and act as a complete stand alone web application with database
integration in the backend to store user information and Florida Institute of
Technology catalogs.

Algorithms and tools for the key features:

● The languages html, css, javascript and Python will be used all together to create
the full stack web application.

● For the front end, github pages was used to host the html and css pages for the
website (Homepage, ATCE tool, About, Documentation).

● For full stack web application integration the Flask Python framework will be used
to convert the website into a full stack web application with backend support.

● PDF.js is used for PDF file parsing support. A javascript script is embedded
within the html for the web page to support the parsing of data from a pdf file
using this library.

● Sqlite3 will be used inside of the Flask web application to include database
support and allow for the storage of catalogs and possibly user login information
as well in a database.

Novel features:
● The evaluation is automated rather than manual. Typically, the systems already

in place require staff to manually type in a list of the transfer credits to compare to
the FIT catalog. Our application will only require an upload of a file with the
transfer credits rather than having to manually input the transfer credits.

● Students will be able to independently perform transfer credit evaluations
simplifying the process of transferring from one institution to another and
clarifying which credits will be accepted at the Florida Institute of Technology.

● We are ensuring the security and integrity of our application by creating a two tier
system which will only allow admin accounts to have access to sensitive
information about/within the system.

Technical Challenges:
● We will need to create an algorithm to accurately match courses from other

universities to courses at FIT. This algorithm will need to be able to properly
evaluate course equivalencies. This can be done via course descriptions at the
Florida Institute of Technology which can be used with the students' transcripts
which shall also contain a course description for each course to match equivalent
courses and determine which credits shall be accepted based on similarity in
course description.

● We will need to implement the two tier system in order to ensure security in our
web application. The users should not be allowed any unauthorized access to the
source code of the website, or data analytics on the usage of the tool. The user
shall only be able to create a user level account, upload a transcript, select a
catalog, and perform an evaluation. Any other data and or resources on the
server and website shall only be accessed by an admin user.

● We shall ensure that our full stack web application can handle basic web

application vulnerabilities. This will be done via the built in protections offered by
the Flask framework as well as some penetration testing of the website once
complete.

● We shall implement secure file handling (upload, processing, and storage) in
order to prevent any possible security vulnerabilities. For example, an attacker
could upload an executable file that could result in some executable or malicious
script that could be used to manipulate our tool or access sensitive information.
Therefore the user input where they upload a transcript shall be secured to only
allow for certain file extensions and this should be validated further than the file
extension. For example it should not just check if the file ends with a .pdf or .txt
because an attacker could disguise an executable file as a .pdf.

Design (system architecture diagram):

Evaluation

● Speed - Currently the system processes the transcript data within 5 seconds.
● Accuracy - The system we currently have set up can properly parse lines in the

proper format from txt and pdf files. However, it can only parse the first line of a
page so if there is more than one line per page it skips every line after the first
one.

● Reliability - The system uptime is currently 99%. It handles all of the types of files
that it states it can handle. As previously stated, we still need to fix some issues
with pdf parsing, but aside from this it parses files properly in the correct format.
The drag and drop feature works properly as well.

● The system is very user friendly. The instructions are clear and the functionality is
very simple.

Progress Summary

Module/feature Completion Todo

Website front end html &
css webpages hosted with

100% N/A

github pages

Specified Format Txt file
parsing/processing

100% N/A

Specified Format Pdf file
parsing/processing

100% N/A

Full Stack Standalone Web
Application Conversion
Using Flask

0% Use Flask Python web
application framework to
convert the current version
of our website (only
frontend hosted with github
pages using html and css)
to a full stack web
application with backend
functionality using sqlite3.

User and Admin Account
Creation + Logins

0% Use the backend
functionality created with
Flask to allow the creation
of User and Admin
accounts and storage of
user information in the
backend using sqlite3.

Built in Flask Common
Web Application Security
Mechanisms

0% Use Flask’s built- in
security protection
mechanisms in our web
application once
developed. This can be
done via lines of Python
code inside of the app.py
file once the frontend has
been integrated.

Secure File
Upload/Processing

0% Be sure to validate the
extensions of files and
ensure that they are
genuine. For example we
currently accept .pdf and
.txt files and we want to
make sure that an attacker
cannot change the
extension of an executable
file (.exe, .bin) to a .pdf and
cause damage to our

server.

Basic Web Application
Pentesting

0% Attempt basic pentesting
on our web application
once it has been finished
to ensure that our
application is secure and
safe from common web
application vulnerabilities.

Milestone 4 (Feb 24) Itemized Tasks:

● Use Flask Python web application framework to convert the current version of
our website (only frontend hosted with github pages using html and css) to a full
stack web application with backend functionality using sqlite3.

Milestone 5 (Mar 26) Itemized Tasks:

● Use the backend functionality created with Flask to allow the creation of User
and Admin accounts and storage of user information in the backend using
sqlite3.

Milestone 6 (Apr 21) Itemized Tasks:

● Use Flask’s built- in security protection mechanisms in our web application once
developed. This can be done via lines of Python code inside of the app.py file
once the frontend has been integrated.

● Be sure to validate the extensions of files and ensure that they are genuine. For
example we currently accept .pdf and .txt files and we want to make sure that an
attacker cannot change the extension of an executable file (.exe, .bin) to a .pdf
and cause damage to our server.

● Attempt basic pentesting on our web application once it has been finished to
ensure that our application is secure and safe from common web application
vulnerabilities.

Task Matrix For Milestone 4

Task Tyler Kendall

Initial set up of flask environment 0% 100%

Frontend migration 100% 0%

Implement, test, and demo the database 50% 50%

Implement, test, and demo the file upload
system

0% 100%

Implement, test, and demo API development 100% 0%

Description of Each Planned Task for Milestone 4

1. Initial Flask Setup - Set up the virtual python environment and install flask and all
other required components. Then, create the application structure and configure
the development server.

2. Frontend Migration - We will need to transfer our HTML templates into the Flask
template system. Then we’ll need to update how we handle CSS and Javascript
files and make sure all of the file paths still work correctly. We will do this by
converting our pages to work with Flask and test that everything is still displayed
properly.

3. Integrating the Database - Design the SQLite database schema and create the
initial migration scripts as well as set up the database connection. We will then
need to create database models for the FIT course catalogs, transfer credit
evaluations, and session management. Implement operations such as create,
read, update, and delete.

4. File Upload System - We need to create a system that can handle file uploads
securely, focusing mainly on txt and pdf files. To do this we will need to build the
upload functionality, store files on the server safely, and ensure we can properly
process the files. We then need to validate the files to ensure they’re not
malicious.

5. API Development - We need to build the core API endpoints for uploading
transcripts, selecting catalogs, and getting the results for the evaluations. These
endpoints need to be reliable and need to be able to handle errors correctly while
providing the appropriate feedback to users when they’re triggered.

Approval From Faculty Advisor:
● “I have discussed with the team and approved this project plan. I will evaluate the

progress and assign a grade for each of the three milestones”

● Signature: __________________________________ Date: ____________

sneha sudhakaran
signature

snehasudhakaran

snehasudhakaran
01/23/2025

	Bookmarks

