
Automated Transfer Credit Evaluator
(ATCE)

Milestone 6 Evaluation
Tyler Dionne & Kendall Kelly

Testing Login and Registration with Burpsuite
● Intercept login page requests to test security

● Run the Flask app locally and then use
BurpSuite to intercept/modify requests

● We focused on input validation, error handling,
and security configurations

Login Page Fuzzing Test Cases

BurpSuite Testing Results
● All results and outputs were normal

● Application showed consistent error
handling for all of our test cases

● No vulnerabilities were discovered
during BurpSuite Fuzzing

OWASP ZAP Vulnerability Scan
● Run ZAP

● Start new session

● Set our Flask app as target

● Purpose is to identify common web
vulnerabilities automatically

ZAP Vulnerability Report
● Absence of Anti CSRF Tokens (highest severity)

● Cross-Site Request Forgery (CSRF)
○ Malicious website tricks users browser into making unwanted

request to another site where that user is authenticated.

● Ex. While logged into bank, visiting a malicious site secretly submits
transfer request

● Implications:
○ Attackers can perform actions without your knowledge
○ Could lead to changes in your account or data theft
○ Most dangerous when admin accounts are targeted

Security Improvements
● Input validation

● Prevents injection attacks (SQL, Command, and XSS)

● CSRF Protection using Flask-WTF

● Prevents cross-site request forgery attacks

def sanitize_input(user_input):
 # take out special characters and limit input length
 return ''.join(char for char in user_input if char.isalnum() or char.isspace())[:50]

from flask_wtf.csrf import CSRFProtect
…
csrf = CSRFProtect(app)
app.config['SECRET_KEY'] = 'your-secret-key'

Security Improvements (Cont.)
● Rate Limiting

● Prevents brute force and DoS attacks

● Security Headers

● Protects against client-side exploits

from flask_limiter import Limiter
from flask_limiter.util import get_remote_address

limiter = Limiter(
 app,
 key_func=get_remote_address,
 default_limits=["200 per day", "50 per hour"]
)

@app.after_request
def add_security_headers(response):
 response.headers['X-Content-Type-Options'] = 'nosniff'
 response.headers['X-Frame-Options'] = 'DENY'
 response.headers['X-XSS-Protection'] = '1; mode=block'
 return response

Lessons Learned
● Gained experience with tools for web app security

○ BurpSuite - intercept and modify requests

○ ZAP - automated vulnerability scanning

● Developed skills:

○ Flask framework and security implementation

○ Login page fuzzing and assessing vulnerabilities

○ Database integration with security

● Web app development and web security are complex

○ No straightforward path

○ Different applications will require different approaches to security

○ Security should be implemented throughout development

