
Team Members:
Tyler Dionne (tdionne2021@my.fit.edu), Kendall Kelly (kelly2021@my.fit.edu)

Project Advisor:
Sneha Sudhakaran, ssudhakaran@fit.edu

Project Title:
FIT Automated Transfer Credit Evaluation

Client:
Sneha Sudhakaran

Website:
https://tylerdionne.github.io/ATCE-FIT/index.html

Milestone 6 Progress Evaluation

1. Progress of Current Milestone:

Task Completion % Tyler Kendall To Do

Create test cases for the
fuzzing of the /login page

100% 100% 100% N/A

Install BurpSuite 100% 100% 0% N/A

Learn BurpSuite (how to
open the site in the
burpsuite chromium
browser use the intercept
tool, use the repeater tool
to edit and send requests)

100% 100% 100% N/A

Use burp suite to fuzz the
/login page with all of the
test cases and analyze the
output searching for bugs.
Testing both the username
input field and the
password input field with
the test cases.

100% 100% 100% N/A

Document findings
professionally the same as

100% 100% 100% N/A

https://tylerdionne.github.io/ATCE-FIT/index.html

a professional fuzzing
environment

Install ZAP 100% 100% 0% N/A

Learn how to use ZAP (load
in target address and then
run the Spider auto
analyzer tool to generate a
report)

100% 0% 100% N/A

Analyze the ZAP report
taking into account the
findings under the “Alerts”
tab analyzing each entry
and the severity

100% 100% 100% N/A

Overview of general web
application security
improvements that can be
made in the main Flask
python file to create an
overall secure application
that resists common
exploits

100% 100% 100% N/A

2. Discussion of Each Completed Task:

Local Pentesting and Vulnerability Testing
1.) Test Login and Registration with BurpSuite
Launch Flask app
$ python3 app.py

Open Burp Suite → Proxy → Options → ensure intercept is on.

In the burpsuite chromium browser go to:

http://127.0.0.1:5000/login

Once loaded in, will have to hit forward to send through the GET request.

Enter dummy login credentials and click "Log in."

In Burp, we see the POST request intercepted.

Forward the request and go to HTTP history → Right Click → Send to Repeater

Then in the Repeater try to change the username, password field, remove the CSRF token and
see how the app responds to incorrect data.

In order to properly fuzz login inputs the test cases should demonstrate testing of 1.) Input
validation 2.) Error handling 3.) Security misconfigurations 4.) Edge cases

Test Cases for Fuzzing

Purpose Input

Normal test admin, user1

Long input a . . . a (1000+ chars)

Special characters $$$$$$, <>!@#$%^&*()

SQL Injection ' OR 1=1--, admin'--

NoSQL Injection {"$ne": null}

XSS Injection <script>alert(1)</script>

Unicode ユーザー

Whitespace \tadmin\t

Path traversal ../../etc/passwd

Null byte admin%00

Quotes/brackets `"'{}[]``

Empty “”

Command injection && /bin/sh\0;

The goal of this is to see how the app deals with incorrect/strange data.

Burp Suite /login Fuzzing Results

Input # Input Result/Output

01 (User +
Pass)

admin Normal (Login unsuccessful. Please check
username and password.)

02 (User +
Pass)

aaa … aaa (1000 a’s) Normal (Login unsuccessful. Please check
username and password.)

03 (User +
Pass)

$$$$$$ Normal (Login unsuccessful. Please check
username and password.)

04 (User +
Pass)

<>!@#$%^&*() Normal (Login unsuccessful. Please check
username and password.)

05 (User +
Pass)

' OR 1=1--, admin'-- Normal (Login unsuccessful. Please check
username and password.)

06 (User +
Pass)

{"$ne": null} Normal (Login unsuccessful. Please check
username and password.)

07 (User +
Pass)

<script>alert(1)</script> Normal (Login unsuccessful. Please check
username and password.)

08 (User +
Pass)

ユーザー Normal (Login unsuccessful. Please check
username and password.)

09 (User +
Pass)

\tadmin\t Normal (Login unsuccessful. Please check
username and password.)

10 (User +
Pass)

../../etc/passwd Normal (Login unsuccessful. Please check
username and password.)

11 (User +
Pass)

admin%00 Normal (Login unsuccessful. Please check
username and password.)

12 (User +
Pass)

“” “Please fill out this field.” displayed properly

13 (User +
Pass)

&& /bin/sh\0; Normal (Login unsuccessful. Please check
username and password.)

Some images from testing

The final results from the burpsuite driven fuzzing of the /login page show the application
behaves normally when given incorrect, strange, and purposefully malicious data.

2.) Test for Common Web Vulnerabilities with OWASP ZAP

Run ZAP

Start a new session

Set Flask web app as the target

http://127.0.0.1:5000

During scanning

Once the scan completes we see a summary of the issues found by ZAP.

We see several areas of our web application that have issues. The color of the flag signifies the
severity of the issue if present. From this report we see that the “Absence of Anti-CSRF Tokens”
is placed at the top of the list signifying that this is the most severe issue found.

CSRF stands for Cross-Site Request Forgery and basically is a type of attack where a malicious
website tricks a user's browser into making an unwanted request to another site where that user
is authenticated. An example is you are logged into your bank at bank.com and while you're
logged in you go to a malicious website that has a hidden form that essentially sends a post
request to bank.com and since you are logged in your browser includes the session cookie in
the request that is in the malicious form.

3.) General web application security improvements

Input validation

def sanitize_input(user_input):
 # take out special characters and limit input length
 return ''.join(char for char in user_input if char.isalnum() or char.isspace())[:50]

Input validation is important in any web application that accepts user input. This is due to the
fact that many security risks appear as soon as an application allows a user to provide input.
This shows the reason why user input needs to be treated carefully and sanitized/validated to
be sure the input will not cause any unexpected behavior in the application. The key idea is that
a function strips out dangerous characters like ;, ', <, >, and & that can be used to inject

malicious code or commands. This security improvement protects against injection attacks such
as SQL Injection, Command Injection, and Cross-site Scripting (XSS).

CSRF Protection

from flask_wtf.csrf import CSRFProtect
…
csrf = CSRFProtect(app)
app.config['SECRET_KEY'] = 'your-secret-key'

CSRF protection makes sure that only requests with a valid CSRF token which are included in
legit form submissions are accepted by the server. This works by Flask-WTF inserting hidden
tokens into forms and the server checks that token upon submission.

Rate Limiting

from flask_limiter import Limiter
from flask_limiter.util import get_remote_address

limiter = Limiter(
 app,
 key_func=get_remote_address,
 default_limits=["200 per day", "50 per hour"]
)

This protects against brute force attacks and denial of service by limiting how many times a
client can send a request. It stops attackers from spamming endpoints like login forms or
resource intensive APIs. It works by using the get_remote_address() function to track the user’s
IP address and then the limiter enforces a rule like no more than 50 requests per hour.

Security Header

@app.after_request
def add_security_headers(response):
 response.headers['X-Content-Type-Options'] = 'nosniff'
 response.headers['X-Frame-Options'] = 'DENY'
 response.headers['X-XSS-Protection'] = '1; mode=block'
 return response

These headers help prevent attacks like content sniffing, reflected xss in old browsers and
clickjacking by using these headers to tell the browser to behave more securely. These headers
ultimately help reduce the risk of common client side exploits.

X-Content-Type-Options: nosniff tells browsers not to guess the content type and stops it from
executing a script disguised as a file.

X-Frame-Options: Deny blocks the site from being embedded in a iframe which stops
clickjacking which is when users get tricked into clicking buttons.X-XSS-Protection: 1;
mode=block enables XSS protection in older browsers and if XSS gets detected the page wont
load.

3. Team Member Contribution of Milestone 6:
Tyler Dionne - Create test cases for the fuzzing of the /login page, Install BurpSuite, Overview of
general web application security improvements that can be made in the main Flask python file
to create an overall secure application that resists common exploits, Analyze the ZAP report
taking into account the findings under the “Alerts” tab analyzing each entry and the severity,
Install ZAP, Document findings professionally the same as a professional fuzzing environment

Kendall Kelly - Create test cases to fuzz the /login page. Become more familiar with BurpSuite
and how to use its features. Use BurpSuite to fuzz the /login page with all of the test cases and
find any bugs. Test both username and password input fields using the test cases, then
document findings. Become more familiar with ZAP and how to use it. After getting the ZAP
report, look at the “Alerts” tab and analyze each entry. Create an overview of the security
improvements that could be made to make a more secure application.

4. Lessons Learned

From this project many lessons have been learned about web applications, the Flask web
framework, the python programming language, html/css/javascript and how they work together
to create websites with dynamic content/forms/tools, how to pentest/fuzz a web application with
a user form such as a login page, how to create a full stack web application that allows the user
to make an account and log in, how to create dynamically displayed content in html pages, how
to use jinja2 templating to turn a website from a static website hosted on github into a
standalone full stack web application, how to run Flask web applications locally, how to work
with a database and integrate it within a main Flask file, how to use burpsuite to intercept
requests with interceptor tool and send requests with the repeater tool, how to use OWASP ZAP
to perform auto scans that generate reports that can be used to find vulnerabilities/weak spots
in a website, how to create a website with a protected tool that can only be accessed by
members with an account, how to use javascript inside of html to import libraries and read data
from a pdf file.

Overall the lesson learned is that web application development and web application security are
complex subjects with endless material, tools and methods used to create full stack web
applications. Web application development is not a straightforward task and it is not something
that has a clear path from start to finish. With different applications come different use cases
and needs whether it be security or the way the UI is designed and therefore web application
development is never straightforward.

5. Date(s) of meeting(s) with Client during the current milestone:

● Once a week every two weeks

6. Client feedback on the current milestone:

● See Faculty Advisor Feedback below

7. Date(s) of meeting(s) with Faculty Advisor during the current milestone:

● Once a week every two weeks

8. Faculty Advisor feedback on each task for the current Milestone:
Faculty Advisor Signature: _______________________________ Date: ________

Evaluation by Faculty Advisor

Faculty Advisor: detach and return this page to Dr. Chan (HC 209) or email the scores to
pkc@cs.fit.edu

Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or write down
a real number between 0 and 10)

Tyler
Dionne

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Kendall
Kelly

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Faculty Advisor Signature: _______________________________ Date: __________

