
Team Members:
Tyler Dionne (tdionne2021@my.fit.edu), Kendall Kelly (kelly2021@my.fit.edu), Braden
Corkum (corkumb2013@my.fit.edu)

Project Advisor:
Sneha Sudhakaran, ssudhakaran@fit.edu

Project Title:
FIT Automated Transfer Credit Evaluation

Client:
Sneha Sudhakaran

Website:
https://tylerdionne.github.io/ATCE-FIT/index.html

Milestone 3 Progress Evaluation

1. Progress of Current Milestone:

Task Completion % Tyler Kendall Braden To Do

Transcript creation. 100% 33.3
%

33.3% 33.3% Begin to modify the
complexity of data and
extensions supported
incrementally as progress
is made on the final
product.

ATCE Tool User
Interface
Improvements: Drag
& Drop, Visual
Appeal, User-friendly.

100% 50% 50% 0% Implement storage of FIT
catalogs in a DB once the
backend is implemented.

PDF preprocessing
and generating a
format for parsing to
front end.

100% 0% 0% 100% Implement techniques to
identify what data to take
from transcripts.

PDF Parsing Logic:
integrated with the

100% 50% 50% 0% Implement backend
functionality with sql lite

https://tylerdionne.github.io/ATCE-FIT/index.html


html front end for the
atce.html webpage.
Improvements: txt,
and pdf support, html
scripts to parse data
from a pdf, verify
format constraints,
and display the
information in a table
to the user.

DB to store catalogs,
logins. Use python Flask
to implement backend
functionality to store and
retrieve data and run the
entire web app
independently with
docker.
Improve pdf parsing with
more than one line per file
(in progress) and a more
realistic schema for the
format expected in the
transcript.

2. Discussion of Each Completed Task:

Transcript creation

Braden Corkumb - obtained 15 college university transcripts online in a .pdf format.
Kendall Kelly - obtained 10 transcripts
Tyler Dionne - obtained 10 transcripts. created 10 transcripts in .pdf format to test newly
implemented pdf parsing features in the atce tool.

ATCE Tool User Interface Improvements: Drag & Drop, Visual Appeal, User-friendly
PDF Parsing Logic: Integrated .pdf support with the html front end for the atce.html
webpage. Improvements: pdf support, html scripts to parse data from a pdf & verify
format constraints, display the information to the console.

ATCE Tool User Interface Improvements

Previous:



Updated:

1. Visual Appeal



Previous: Visually un-appealing to the user. Does not quite look like a tool. Not
convenient and or easy to use. Outdated UI design.

Updated: The visual appeal of the newly designed UI is a great improvement
given the use of lighter colors in the backdrop and icons in contrast to the
outdated, dull design initially. Visually looks more like a tool that you would find
online in 2024 in the updated version rather than ancient math design previously.

2. Drag & Drop Functionality:

Previous: Visually un-appealing to the user. Does not quite look like a tool. Not
convenient and or easy to use. Outdated UI design.

Updated: The Drag & Drop Functionality improves the usability of the tool and
makes for an improved user experience by providing the option to choose
whether to select a file traditionally or drag and drop. Drag and Drop features are
popular among users who may want to upload various files at one time.

3. User-friendly

Previous: Visually un-appealing to the user. Does not quite look like a tool. Not
convenient and or easy to use. Outdated UI design.

Updated: With the improved UI design, convenient file uploading and extended
support for pdf files the tool and front end of the web application as a whole has
had an increase in user friendliness, practicality and usability.

1. .pdf Support
Scripts were integrated directly into the front end html for the atce tool.
Thus far the tool can read in .txt files and .pdf files in a specific format.

The tool utilizes the PDF.js library to handle PDF file processing. This library is initialized
at the beginning of the script:

pdfjsLib.GlobalWorkerOptions.workerSrc =
'https://cdnjs.cloudflare.com/ajax/libs/pdf.js/3.11.174/pdf.worker.m
in.js';



When the user uploads the pdf, the processPDF function is called and deals with
extracting text content from the file.

async function processPDF(file) {
try {

const arrayBuffer = await file.arrayBuffer();
const pdf = await pdfjsLib.getDocument({ data: arrayBuffer

}).promise;
let extractedText = '';
progress.style.width = '30%';

for (let i = 1; i <= pdf.numPages; i++) {
const page = await pdf.getPage(i);
const textContent = await page.getTextContent();
const pageText = textContent.items.map(item =>

item.str).join(' ');
extractedText += pageText + '\n';
progress.style.width = `${30 + (70 * i /

pdf.numPages)}%`;
}

const lines = extractedText.split('\n');
validateAndProcessContent(lines);

} catch (error) {
formatError.textContent = 'Error processing PDF: ' +

error.message;
formatError.style.display = 'block';
progressBar.style.display = 'none';

}
}

The function extracts the text by:
● Converting the file to an ArrayBuffer
● Using the PDF.js library to load the document and then iterate through each page

of the pdf and extract the text content
● Updating a progress bar to the user
● Splitting the text from the .pdf file into lines and passing them to

validateAndProcessContent



After the text is extracted and sent to the validateAndProcessContent function it makes
sure that the content follows the desired format and if so it is validated.

function validateAndProcessContent(lines) {
let isValid = true;
const processedLines = [];

for (let line of lines) {
line = line.trim();
if (line === '') continue;
const parts = line.split(',').map(part => part.trim());
if (parts.length !== 4) {

isValid = false;
break;

}
if (isNaN(parts[2])) {

isValid = false;
break;

}
if (!parts[3].match(/^[A-F][+-]?$/)) {

isValid = false;
break;

}
processedLines.push({

courseID: parts[0],
courseName: parts[1],
credits: parseFloat(parts[2]),
grade: parts[3]

});
}

// ... (code for handling validation results)
}

The function checks each line to make sure it contains four comma-separated values
(course ID, course name, credits, and grade) and it verifies that the credits are numeric
and grade follows the expected format (A+). If the content passes the checks it makes
an array of processed course objects and the displayResults function is called to
present the data to the user/console.



function displayResults(processedLines) {
const resultsContainer =

document.getElementById('results-container');
const resultsBody = document.getElementById('results-body');
const totalCreditsCell = document.getElementById('total-credits');

resultsBody.innerHTML = '';

const totalCredits = processedLines.reduce((sum, course) => sum +
course.credits, 0);

processedLines.forEach(course => {
const row = document.createElement('tr');
row.innerHTML = `

<td>${course.courseID}</td>
<td>${course.courseName}</td>
<td>${course.credits}</td>
<td>${course.grade}</td>

`;
resultsBody.appendChild(row);

});

totalCreditsCell.textContent = totalCredits.toFixed(1);
resultsContainer.style.display = 'block';

}

The function creates a table row for each course, inserts the extracted information, and
calculates the total credits. The results are then displayed in a table directly below the
atce tool.



By implementing support for .pdfs, we have improved the atce tool to become more
practical and user friendly.

Testing
To test the new implementation of .pdf support, the team created a small data set of
example transcripts in .pdf format to ensure the script is validating the requirements
properly.

test-1.pdf
CSE 3120, Database Systems, 3, A+



Default test case.

test-4.pdf
CSE 1002 , Intro To Programming, , B+



If no credits are specified we see there is no error printed but instead the NaN
(NotaNumber) value is placed in the credits column. This test case help us to find a bug
and understand what additional checks need to be done.

test-8.pdf
CSE 1002 , Intro To Programming, 2 , G

We see here that the script picks up on any letter outside of the range A+ to F- and
hence when we have G as a grade we have invalid format.

By developing tests for the new implementation we can use edge cases and fuzzing
techniques to find any unexpected functionality of our program. These test cases help
us to understand bugs and additional checks that need to be done in order to validate
the format correctly in each scenario.

Developing test cases helps the team to find bugs in our html script and understand
additional checks that need to be done to validate format.

3. Team Member Contribution of Milestone 3:

Braden Corkumb - Obtained 15 college university transcripts online in a .pdf format. Will
develop techniques to identify what data might be critical and how the transcript data
can be used to match with transfer credits. Also, will learn more about the different
transcripts and make sure
preprocessing is done and this preprocessed information will later be integrated to
ATCE
tool.



Tyler Dionne - Obtained 10 transcripts and created 10 transcripts in .pdf format to test
newly implemented pdf parsing features in the atce tool. ATCE Tool User Interface
Improvements: Drag & Drop, Visual Appeal, User-friendly. PDF Parsing Logic:
Integrated .pdf support with the html front end for the atce.html webpage.
Improvements: pdf support, html scripts to parse data from a pdf & verify format
constraints, display the information to the console.

Kendall Kelly - Created 10 transcripts in .pdf format to test newly implemented pdf
parsing features in the atce tool. Worked on improving UI attributes such as general
visual appeal and drag and drop features for files. Helped integrate PDF support with
the html front end for the tool page. Helped write the html scripts to parse data from
PDF files and verify the format constraints. Also assisted in displaying the information to
the console.

4. Plan for Milestone 3:

Task Tyler Kendall Braden

Given FERPA
regulation,
determine how to
generate a corpus
of transcripts for
testing.

Tyler will work to find a
solution to legal
regulations with obtaining
genuine university
transcripts online.
Research ways to
generate a dataset of
generated, realistic
transcripts.

Kendall will work to find a
solution to legal
regulations with obtaining
genuine university
transcripts online.
Research ways to
generate a dataset of
generated, realistic
transcripts.

Braden will work to find a
solution to legal
regulations with
obtaining genuine
university transcripts
online. Research ways to
generate a dataset of
generated, realistic
transcripts.

Begin to modify
the complexity of
data and
extensions
supported
incrementally as
progress is made
on the final
product.

Tyler will find and
recommend
data extension
complexities for ACTE
tool.

Kendall will recommend
data extension
complexities for ACTE
tool.

Braden will work to begin
to modify the complexity
of data and extensions
supported incrementally
as progress is made on
the final product.

Implement storage
of FIT catalogs in
a DB once the
backend is
implemented.

Tyler will implement
storage of FIT catalogs in
a DB once the backend is
implemented.

Kendall will work to
implement storage of FIT
catalogs in a DB once the
backend is implemented.

Based on input of data
to be fit in Braden will
make sure the data
given for querying
databased is in
standard format



Implement
backend
functionality with
sql lite DB to store
catalogs, logins.
Use python Flask
to implement
backend
functionality to
store and retrieve
data and run the
entire web app
independently with
docker.

Tyler will work to
implement backend
functionality with sql lite
DB to store catalogs,
logins. Use python Flask
to implement backend
functionality to store and
retrieve data and run the
entire web app
independently with docker.

Kendall will use sql lite DB
to start implementing the
backend. SQLite will store
the catalogs and logins.
Flask will be used to
implement backend
functionality to store and
retrieve data and run the
entire web app.

Braden will test the
tool and update how
the DB works

Improve pdf
parsing with more
than one line per
file (in progress)
and a more
realistic schema
for the format
expected in the
transcript.

Tyler will work to improve
pdf parsing with more than
one line per file (in
progress) and a more
realistic schema for the
format expected in the
transcript.

Kendall will try to improve
pdf parsing with more
than one line per file.

Braden will take over
Pdf parsing and make
a more realistic
schema for the format
expected in the
transcript.

5. Date(s) of meeting(s) with Client during the current milestone:
● Once a week every two weeks

6. Client feedback on the current milestone:
● See Faculty Advisor Feedback below

7. Date(s) of meeting(s) with Faculty Advisor during the current milestone:
● Once a week every two weeks

8. Faculty Advisor feedback on each task for the current Milestone:
Faculty Advisor Signature: _______________________________ Date: ________

Evaluation by Faculty Advisor

11/22/2024



Faculty Advisor: detach and return this page to Dr. Chan (HC 209) or email the scores
to pkc@cs.fit.edu

Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or
write down a real number between 0 and 10)

Tyler
Dionne

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Kendall
Kelly

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Braden
Corkum

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Faculty Advisor Signature: _______________________________ Date: __________11/22/2024


